topology, oxidation states, and charge transport in ionic conductors

Stefano Baroni
Scuola Internazionale Superiore di Studi Avanzati
Trieste — Italy
serious answers to four silly questions
serious answers to four silly questions

how come the electric conductivity of molecular non-ionic fluids vanishes, when the current fluctuations that determine it, do not?
serious answers to four silly questions

how come the electric conductivity of molecular non-ionic fluids vanishes, when the current fluctuations that determine it, do not?

how come the conductivity of (stoichiometric) electrolytes is correctly predicted when real-valued, time-dependent, tensor Born effective charges are replaced with integer-valued, time-independent, scalar atomic oxidation states?
serious answers to four silly questions

how come the electric conductivity of molecular non-ionic fluids vanishes, when the current fluctuations that determine it, do not?

how come the conductivity of (stoichiometric) electrolytes is correctly predicted when real-valued, time-dependent, tensor Born effective charges are replaced with integer-valued, time-independent, scalar atomic oxidation states?

what are oxidation states, in the first place?
serious answers to four silly questions

- how come the electric conductivity of molecular non-ionic fluids vanishes, when the current fluctuations that determine it, do not?

- how come the conductivity of (stoichiometric) electrolytes is correctly predicted when real-valued, time-dependent, tensor Born effective charges are replaced with integer-valued, time-independent, scalar atomic oxidation states?

- what are oxidation states, in the first place?

- to start with: how come the heat conductivity is well defined, when the energy current that determines it, is not?
linear-response theory of transport

\[J = \lambda F \]
linear-response theory of transport

\[J = \lambda F \]

charge transport

\[J_Q = \sum q_i V_i \]
\[F_Q = -\nabla \phi \]

\(\lambda = \text{electric conductivity} \)
linear-response theory of transport

\[J = \lambda F \]

charge transport

\[J_Q = \sum_i q_i V_i \]
\[F_Q = -\nabla \phi \]
\[\lambda = \text{electric conductivity} \]

energy transport

\[J_\varepsilon = \sum_i e_i V_i + \frac{1}{2} \sum_{i \neq J} (V_i \cdot F_{iJ})(R_i - R_J) \]
\[F_\varepsilon = -\nabla T \]
\[\lambda = \text{heat conductivity} \]
linear-response theory of transport

\[J = \lambda F \]

charge transport

\[J_Q = \sum_l q_l V_l \]
\[F_Q = -\nabla \phi \]
\[\lambda = \text{electric conductivity} \]

energy transport

\[J_\varepsilon = \sum_l e_l V_l + \frac{1}{2} \sum_{l \neq J} (V_l \cdot F_{I,J})(R_l - R_J) \]
\[F_\varepsilon = -\nabla T \]
\[\lambda = \text{heat conductivity} \]
linear-response theory of transport

\[J = \lambda F \]

charge transport

\[J_Q = \sum_l q_l V_l \]
\[F_Q = -\nabla \phi \]
\[\lambda = \text{electric conductivity} \]

energy transport

\[J_{\varepsilon} = \sum_l e_l V_l + \frac{1}{2} \sum_{l \neq j} (V_l \cdot F_{lJ})(R_l - R_J) \]
\[F_{\varepsilon} = -\nabla T \]
\[\lambda = \text{heat conductivity} \]

\[\lambda \propto \int_0^\infty \langle J(t)J(0) \rangle dt \]
Green-Kubo
linear-response theory of transport

\[J = \lambda F \]

Green-Kubo

\[\lambda \propto \int_0^\infty \frac{\langle J(t)J(0) \rangle dt}{\langle J^2 \rangle_T} \]

\[\int_0^t \langle J(t')J(0) \rangle dt' \]
linear-response theory of transport

\[\mathbf{J} = \lambda \mathbf{F} \]

Green-Kubo

\[\lambda \propto \int_0^\infty \frac{\langle \mathbf{J}(t) \mathbf{J}(0) \rangle}{\langle \mathbf{J}^2 \rangle_T} dt \]

Einstein-Helfand

\[\lambda \propto \lim_{t \to \infty} \frac{1}{2t} \text{var} \left[\int_0^t \mathbf{J}(t') dt' \right] \]
a prequel:
heat transport
classical and quantum adiabatic heat transport

\[J_\mathcal{E} = \sum_l e_l V_l + \frac{1}{2} \sum_{l \neq J} (V_l \cdot F_{IJ})(R_l - R_J) \]

Thermal Conductivity of Periclase (MgO) from First Principles

Stephen Stackhouse*
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan, 48109-1005, USA

Lars Stixrude†
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom

Bijaya B. Karki‡
Department of Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA
and Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA

sensitive to the form of the potential. The widely used Green-Kubo relation [14] does not serve our purposes, because in first-principles calculations it is impossible to uniquely decompose the total energy into individual contributions from each atom.
Thermal Conductivity of Periclase (MgO) from First Principles

Stephen Stackhouse*
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan, 48109-1005, USA

Lars Stixrude†
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom

Bijaya B. Karki‡
Department of Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA

and Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA

sensitive to the form of the potential. The widely used Green-Kubo relation [14] does not serve our purposes, because in first-principles calculations it is impossible to uniquely decompose the total energy into individual contributions from each atom.
how come?
how come?

how is it that a formally exact theory of the electronic ground state cannot predict all measurable adiabatic properties?
gauge invariance of transport coefficients

energy is extensive

\[E[\Omega_1 \cup \Omega_2] = E[\Omega_1] + E[\Omega_2] \]
gauge invariance of transport coefficients

energy is extensive

$E[\Omega_1 \cup \Omega_2] = E[\Omega_1] + E[\Omega_2] + W[\partial \Omega]$
gauge invariance of transport coefficients

energy is extensive

\[E[\Omega_1 \cup \Omega_2] = E[\Omega_1] + E[\Omega_2] + W[\partial \Omega] \]
\[\Rightarrow \mathcal{E}[\Omega_1] + \mathcal{E}[\Omega_2] \]

\[\mathcal{E}[\Omega] = \int_\Omega e(r) dr \]
gauge invariance of transport coefficients

energy is extensive

\[E[\Omega_1 \cup \Omega_2] = E[\Omega_1] + E[\Omega_2] + W[\partial \Omega] \]

thermodynamic invariance

\[\mathcal{E}[\Omega] = \int_{\Omega} e(r) dr \]

\[\mathcal{E}'[\Omega] = \mathcal{E}[\Omega] + O[\partial \Omega] \]
gauge invariance of transport coefficients

energy is extensive

\[E[\Omega_1 \cup \Omega_2] = E[\Omega_1] + E[\Omega_2] + W[\partial \Omega] \]

\[\equiv \varepsilon[\Omega_1] + \varepsilon[\Omega_2] \]

\[\varepsilon[\Omega] = \int_{\Omega} e(r) dr \]

thermodynamic invariance

\[\varepsilon'[\Omega] = \varepsilon[\Omega] + O[\partial \Omega] \]

gauge invariance

\[e'(r) = e(r) - \nabla \cdot p(r) \]
gauge invariance of transport coefficients

gauge invariance

\[E[\Omega_1 \cup \Omega_2] = E[\Omega_1] + E[\Omega_2] + W[\partial \Omega] \]

thermodynamic invariance

\[\mathcal{E}[\Omega] = \int_{\Omega} e(r) dr \]

\[\mathcal{E}'[\Omega] = \mathcal{E}[\Omega] + \mathcal{O}[\partial \Omega] \]

gauge invariance

\[e'(r) = e(r) - \nabla \cdot p(r) \]

energy is conserved

\[\dot{e}(r, t) = -\nabla \cdot j(r, t) \]

energy is extensive
gauge invariance of transport coefficients

energy is extensive

\[E[\Omega_1 \cup \Omega_2] = E[\Omega_1] + E[\Omega_2] + W[\partial \Omega] \]

\[\equiv \mathcal{E}[\Omega_1] + \mathcal{E}[\Omega_2] \]

\[\mathcal{E}[\Omega] = \int_{\Omega} e(r) dr \]

thermodynamic invariance

\[\mathcal{E}'[\Omega] = \mathcal{E}[\Omega] + O[\partial \Omega] \]

gauge invariance

\[e'(r) = e(r) - \nabla \cdot p(r) \]

\[j'(r, t) = j(r, t) + p(r, t) \]

energy is conserved

\[\dot{e}(r, t) = -\nabla \cdot j(r, t) \]
gauge invariance of transport coefficients

energy is extensive

\[E[\Omega_1 \cup \Omega_2] = E[\Omega_1] + E[\Omega_2] + W[\partial \Omega] \]

\[\implies E[\Omega_1] + E[\Omega_2] \]

\[\mathcal{E}[\Omega] = \int_{\Omega} e(\mathbf{r}) d\mathbf{r} \]

thermodynamic invariance

\[\mathcal{E}'[\Omega] = \mathcal{E}[\Omega] + \mathcal{O}[\partial \Omega] \]

\[\mathbf{J}(t) = \frac{1}{\Omega} \int \mathbf{j}(\mathbf{r}, t) d\mathbf{r} \]

\[\mathbf{P}(t) = \frac{1}{\Omega} \int \mathbf{p}(\mathbf{r}, t) d\mathbf{r} \]

gauge invariance

\[e'(\mathbf{r}) = e(\mathbf{r}) - \nabla \cdot \mathbf{p}(\mathbf{r}) \]

\[\mathbf{j}'(\mathbf{r}, t) = \mathbf{j}(\mathbf{r}, t) + \dot{\mathbf{p}}(\mathbf{r}, t) \]

\[\mathbf{J}'(t) = \mathbf{J}(t) + \dot{\mathbf{P}}(t) \]

energy is conserved

\[\dot{e}(\mathbf{r}, t) = -\nabla \cdot \mathbf{j}(\mathbf{r}, t) \]
gauge invariance of transport coefficients

\[J' = J + \dot{P} \]
gauge invariance of transport coefficients

\[J' = J + \dot{P} \]

\[\lambda \sim \frac{1}{2t} \text{var}[D(t)] \quad D(t) = \int_0^t J(t')dt' \]
The document contains a mathematical discussion on gauge invariance of transport coefficients, with the following equations:

\[J' = J + \dot{P} \]

\[\lambda \sim \frac{1}{2t} \text{var}[D(t)] \quad D(t) = \int_0^t J(t')dt' \]

\[D'(t) = D(t) + P(t) - P(0) \]
gauge invariance of transport coefficients

\[J' = J + \dot{P} \]

\[\lambda \sim \frac{1}{2t} \text{var}[D(t)] \quad \text{D}(t) = \int_0^t J(t') dt' \]

\[D'(t) = D(t) + P(t) - P(0) \]

\[\text{var}[D'(t)] = \text{var}[D(t)] + \text{var}[\Delta P(t)] + 2 \text{cov}[D(t) \cdot \Delta P(t)] \]
gauge invariance of transport coefficients

\[J' = J + \dot{P} \]

\[\lambda \sim \frac{1}{2t} \text{var}[D(t)] \quad D(t) = \int_0^t J(t')dt' \]

\[D'(t) = D(t) + P(t) - P(0) \]

\[\text{var}[D'(t)] = \text{var}[D(t)] + \Delta P(t) + 2\text{cov}[D(t), \Delta P(t)] \]

\[\mathcal{O}(t) \quad \mathcal{O}(1) \quad \mathcal{O}(t^{\frac{1}{2}}) \]
any two conserved densities that differ by the divergence of a (bounded) vector field are physically equivalent

\[\lambda \sim \frac{1}{2t} \text{var}[D(t)] \quad D(t) = \int_0^t J(t') dt' \]

the corresponding conserved fluxes differ by a total time derivative, and the transport coefficients coincide

\[J' = J + \dot{P} \]
gauge invariance of heat transport
ionic transport
$J = \sigma E$
\[\mathbf{J} = \sigma \mathbf{E} \]

\[\mathbf{J} = \frac{1}{\Omega} \mu \]

\[= \frac{1}{\Omega} \sum_{i} \mathbf{Z}_{i}^{*} \cdot \mathbf{v}_{i} \]
\[\mathbf{J} = \sigma \mathbf{E} \]

\[
\mathbf{J} = \frac{1}{\Omega} \dot{\mu} \\
= \frac{1}{\Omega} \sum_i \mathbf{Z}_i^* \cdot \mathbf{v}_i
\]

\[Z_{i\alpha\beta}^* = \frac{\partial \mu_{\alpha}}{\partial u_{i\beta}} \]
\[\mathbf{J} = \sigma \mathbf{E} \]

\[\mathbf{J} = \frac{1}{\Omega} \dot{\mathbf{\mu}} = \frac{1}{\Omega} \sum_{i} \mathbf{Z}_{i}^{*} \cdot \mathbf{v}_{i} \]

\[\sigma = \frac{\Omega}{3k_{B}T} \langle |\mathbf{J}|^2 \rangle \times \tau_{J} \]
the conundrum

molecular H$_2$O

\[J(t) \]

\[J = \frac{1}{\Omega} \sum_{i} Z_i^* \cdot v_i \]

\[\langle J^2 \rangle_\tau = ??? \]
the conundrum

molecular H$_2$O

\[
\mathbf{J} = \frac{1}{\Omega} \sum_i \mathbf{Z}_i^* \cdot \mathbf{v}_i \\
\langle \mathbf{J}^2 \rangle_T = ???
\]

\[
\sigma = \frac{\Omega}{3 k_B T} \int_0^\infty \langle \mathbf{J}(t) \cdot \mathbf{J}(0) \rangle \, dt
\]
Dynamical Screening and Ionic Conductivity in Water from \textit{Ab Initio} Simulations

Martin French,1 Sebastien Hamel,2 and Ronald Redmer1

the conundrum
Dynamical Screening and Ionic Conductivity in Water from Ab Initio Simulations

Martin French,¹ Sebastien Hamel,² and Ronald Redmer¹
Interestingly, the use of predefined constant charges can yield the same conductivity as is found with the fully time-dependent charge tensors, but only if they have values of $Z_H=1$ and $Z_O=-2$.
Interestingly, the use of predefined constant charges can yield the same conductivity as is found with the fully time-dependent charge tensors, but only if they have values of $Z_H=1$ and $Z_O=-2$.\[\int_0^t \langle J(t') J(0) \rangle \, dt'\]
how come?

and what are oxidation states, in the first place?
quantisation of adiabatic particle transport

classical PBC

\[V(x + L) = V(x) \]
quantisation of adiabatic particle transport

\[V(x + L) = V(x) \]

\[\psi(x + L) = \psi(x) \]
quantisation of adiabatic particle transport

classical PBC

\[V(x + L) = V(x) \]

quantum PBC

\[\psi(x + L) = \psi(x) \]

time periodicity

\[V(x, t + T) = V(x, t) \]
quantisation of adiabatic particle transport

classical PBC

\[V(x + L) = V(x) \]

quantum PBC

\[\psi(x + L) = \psi(x) \]

time periodicity

\[V(x, t + T) = V(x, t) \]

\[\frac{L^{d-1}}{e} \int_0^T J_\alpha(t) \, dt = n \in \mathbb{Z} \]

quantisation of adiabatic particle transport

\[L^{d-1} e \int_0^T J_\alpha(t) dt = n \in \mathbb{Z} \]

\[J_\alpha(t) = \frac{e}{L^3} \sum_s Q_s V_s \alpha(t) + \frac{e}{2\pi L^2} \frac{d}{dt} \text{Im} \log \langle \Psi(t) | e^{i2\pi X_\alpha/L} | \Psi(t) \rangle \]

quantisation of adiabatic particle transport

\[
\frac{L^{d-1}}{\epsilon} \int_0^T J_\alpha(t) \, dt = n \in \mathbb{Z}
\]

\[
J_\alpha(t) = \frac{e}{L^3} \sum_s Q_s V_{s\alpha}(t) + \frac{\gamma(t)}{\epsilon}
\]

\[
\frac{e}{2\pi L^2} \frac{d}{dt} \text{Im} \log \langle \Psi(t)|e^{i\frac{2\pi X_\alpha}{L}}|\Psi(t)\rangle
\]

what are oxidation states, in the first place?
what are oxidation states, in the first place?
what are oxidation states, in the first place?

\[[0, L]^{3N} \xrightarrow{\text{PBC}} \mathbb{T}^{3N} \]
what are oxidation states, in the first place?
what are oxidation states, in the first place?

A = A'}
what are oxidation states, in the first place?

\[n_1 = 1 \quad n_2 = 0 \]
what are oxidation states, in the first place?
what are oxidation states, in the first place?
what are oxidation states, in the first place?

\[n_1 = 2 \quad n_2 = 0 \]
what are oxidation states, in the first place?
what are oxidation states, in the first place?
what are oxidation states, in the first place?

\[n_1 = 1 \]

\[n_2 = 1 \]
what are oxidation states, in the first place?

\[\hat{H}(t + T) = \hat{H}(t) \]
what are oxidation states, in the first place?

\[\hat{H}(t + T) = \hat{H}(t) \]

\[\frac{L^2}{e} \int_0^T J_\alpha(t) \, dt = \frac{1}{Le} \int d\mu_\alpha[X] = Q_\alpha \in \mathbb{Z} \]

what are oxidation states, in the first place?

\[
Q_\alpha(AA') = Q_\alpha(AA') = Q_\alpha[n_1 = 1, n_2 = 1]
\]
what are oxidation states, in the first place?

\[Q_\alpha[C] = \frac{1}{\ell} \mu_\alpha[C] \]
what are oxidation states, in the first place?

\[Q_\alpha[C] = \frac{1}{\ell} \mu_\alpha[C] \]

\[= Q_\alpha(n_{1x}, n_{1y}, n_{1z}, \cdots n_{Nz}) \]
what are oxidation states, in the first place?

\[Q_\alpha[C] = \frac{1}{\ell} \mu_\alpha[C] \]

\[= Q_\alpha(n_{1x}, n_{1y}, n_{1z}, \ldots n_{Nz}) \]

\[Q_\alpha[C_1 \circ C_2] = Q_\alpha[C_1] + Q_\alpha[C_2] \]
what are oxidation states, in the first place?

\[
Q_\alpha[C] = \frac{1}{\ell} \mu_\alpha[C] \\
= Q_\alpha(n_{1x}, n_{1y}, n_{1z}, \ldots n_{Nz})
\]

\[
Q_\alpha[C_1 \circ C_2] = Q_\alpha[C_1] + Q_\alpha[C_2]
\]

\[
Q_\alpha(n_{1x}, n_{1y}, n_{1z}, \ldots n_{Nz}) = \sum_{i\beta} q_{i\alpha\beta} n_{i\beta}
\]
what are oxidation states, in the first place?

\[Q_\alpha[C] = \frac{1}{\ell} \mu_\alpha[C] \]
\[= Q_\alpha(n_{1x}, n_{1y}, n_{1z}, \cdots n_{Nz}) \]
\[Q_\alpha[C_1 \circ C_2] = Q_\alpha[C_1] + Q_\alpha[C_2] \]
\[Q_\alpha(n_{1x}, n_{1y}, n_{1z}, \cdots n_{Nz}) = \sum_{i\beta} q_{i\alpha\beta} n_{i\beta} \]

• All loops can be shrunk to a point without closing the gap (strong adiabaticity);

• Any two like atoms can be swapped without closing the gap
what are oxidation states, in the first place?

\[Q_\alpha[\mathcal{C}] = \frac{1}{\ell} \mu_\alpha[\mathcal{C}] \]
\[= Q_\alpha(n_{1x}, n_{1y}, n_{1z}, \ldots n_{Nz}) \]

\[Q_\alpha[\mathcal{C}_1 \circ \mathcal{C}_2] = Q_\alpha[\mathcal{C}_1] + Q_\alpha[\mathcal{C}_2] \]
\[Q_\alpha(n_{1x}, n_{1y}, n_{1z}, \ldots n_{Nz}) = \sum_{i\beta} q_{i\alpha\beta} n_{i\beta} \]

• All loops can be shrunk to a point without closing the gap (strong adiabaticity);

• Any two like atoms can be swapped without closing the gap

\[q_{i\alpha\beta} = q_{S(i)} \delta_{\alpha\beta} \]

atomic oxidation state

... they are topological invariants!
a numerical experiment on molten KCl

a topologically non-trivial minimum-energy path connecting two identical configurations of a ionic melt
a numerical experiment on molten KCl

a topologically non-trivial minimum-energy path connecting two identical configurations of a ionic melt
a numerical experiment on molten KCl
a numerical experiment on molten KCl
a numerical experiment on molten KCl

$Q_x = -0.000(6); \quad Q_y = 0.000(2); \quad Q_z = 1.00(18)$
a numerical experiment on molten KCl

the charges transported by K and Cl around z cancel exactly

\[Q_z[Cl] = -1 \quad Q_y[Cl] = -1 \]
\[Q_z[K] = 1 \quad Q_z[K] = 0 \]
a numerical experiment on molten KCl

the charges transported by K and Cl around z cancel exactly
gauge invariance of charge transport

\[
\sigma \propto \lim_{t \to \infty} \frac{1}{2t} \text{var}[\mu_{AB}(t)]
\]

\[
\mu_{AB}(t) = \int_0^t J(t')dt'
\]
gauge invariance of charge transport

\[\hat{H}(B) \neq \hat{H}(A) \]
\[\hat{H}(A') = \hat{H}(A) \]

\[
\begin{align*}
\sigma & \propto \lim_{t \to \infty} \frac{1}{2t} \text{var} [\mu_{AB}(t)] \\
\mu_{AB}(t) & = \int_0^t J(t') dt'
\end{align*}
\]
gauge invariance of charge transport

\[\hat{H}(B) \neq \hat{H}(A) \]
\[\hat{H}(A') = \hat{H}(A) \]

\[\sigma \propto \lim_{t \to \infty} \frac{1}{2t} \text{var}[\mu_{AB}(t)] \]
\[\mu_{AB}(t) = \int_{0}^{t} J(t')dt' \]
\[= \mu_{AA'} + \mu_{A'B} \]
gauge invariance of charge transport

\[
\hat{H}(B) \neq \hat{H}(A) \\
\hat{H}(A') = \hat{H}(A)
\]

\[
\sigma \propto \lim_{t \to \infty} \left(\frac{1}{2t} \right) \text{var} [\mu_{AB}(t)]
\]

\[
\mu_{AB}(t) = \int_{0}^{t} J(t') dt'
\]

\[
= \mu_{AA'} + \mu_{A'B}
\]
gauche invariance of charge transport

\[\hat{H}(B) \neq \hat{H}(A) \]
\[\hat{H}(A') = \hat{H}(A) \]

\[J_\alpha = \sum_{i\beta} Z^*_{i\alpha\beta} v_{i\beta} \]
\[J'_\alpha = \sum_i q_{S(i)} v_{i\alpha} \]

\[\sigma \propto \lim_{t \to \infty} \frac{1}{2t} \var\left[\mu_{AB}(t) \right] \]
\[\mu_{AB}(t) = \int_0^t J(t') dt' \]
\[= \mu_{AA'} + \mu_{AB} \]
gauge invariance of charge transport

\[\hat{H}(B) \neq \hat{H}(A) \]
\[\hat{H}(A') = \hat{H}(A) \]

\[J_\alpha = \sum_{i\beta} Z^*_{i\alpha\beta} v_{i\beta} \]
\[J'_\alpha = \sum_i q_{S(i)} v_{i\alpha} \]

\[\mu_{AB}(t) = \mu_{AA'} + \mu_{AB} + O(1) \]
\[\hat{H}(B) \neq \hat{H}(A) \]
\[\hat{H}(A') = \hat{H}(A) \]

\[J_\alpha = \sum_{i, \beta} Z^*_{i, \alpha \beta} v_{i \beta} \]
\[J'_{\alpha} = \sum_{i} q_{S(i)} v_{i \alpha} \]

\[\mu_{AB}(t) = \mu_{AA'} + O(1) \]
\[\mu_{AB}(t) = \mu'_{AA'} + O(1) \quad \text{(Thouless)} \]
gauge invariance of charge transport

\[\hat{H}(B) \neq \hat{H}(A) \]
\[\hat{H}(A') = \hat{H}(A) \]

\[\sigma \propto \lim_{t \to \infty} \frac{1}{2t} \text{var} [\mu_{AB}(t)] \]
\[\mu_{AB}(t) = \int_0^t J(t') dt' \]
\[= \mu_{AA'} + \mu_{AB} \]

\[J_\alpha = \sum_{i} Z_{i \alpha \beta} v_{i \beta} \]
\[J'_\alpha = \sum_{i} q_{S(i)} v_{i \alpha} \]

\[\mu_{AB}(t) = \mu_{AA'} + O(1) \]
\[= \mu_{AA'}' + O(1) \quad \text{(Thouless)} \]
\[= \mu_{AB}' + O(1) \]
gauge invariance of charge transport

\[\hat{H}(B) \neq \hat{H}(A) \]
\[\hat{H}(A') = \hat{H}(A) \]

\[J_\alpha = \sum_{i\beta} Z_{i\alpha\beta}^{*} v_{i\beta} \]
\[J'_\alpha = \sum_{i} q_{S(i)} v_{i\alpha} \]

\[\sigma \propto \lim_{t \to \infty} \frac{1}{2t} \text{var} \left[\mu_{AB}(t) \right] \]
\[\mu_{AB}(t) = \int_{0}^{t} J(t') dt' \]
\[= \mu_{AA'} + \mu_{A'B} \]

\[\mu_{AB}(t) = \mu_{AA'} + O(1) \]
\[= \mu'_{AA'} + O(1) \quad \text{(Thouless)} \]
\[= \mu'_{AB} + O(1) \]

\[\sigma = \sigma' \]
currents from atomic oxidation numbers

\[J_\alpha = \sum_{i \beta} Z_{i \alpha \beta} v_{i \beta} \] \hspace{1cm} \text{(2)}

\[J'_\alpha = \sum_i q_{S(i)} v_{i \alpha} \] \hspace{1cm} \text{(9)}
non-stoichiometric melts

$K_x(KCl)_{1-x}$

$K_{33}Cl_{31}$

$x \approx 0.06$
non-stoichiometric melts

\[K_x(KCl)_{1-x} \]

\[K_{33}Cl_{31} \]

\(x \approx 0.06 \)
non-stoichiometric melts

\[K_x(KCl)_{1-x} \]

\[K_{33}Cl_{31} \]

\[x \approx 0.06 \]
non-stoichiometric melts

\[K_x(KCl)_{1-x} \]

\[K_{33}Cl_{31} \quad x \approx 0.06 \]
non-stoichiometric melts

$K_x(KCl)_{1-x}$

$K_{33}Cl_{31}$

$x \approx 0.06$
non-trivial particle transport
non-trivial particle transport
non-trivial particle transport
breach of strong adiabaticity

\[\mu = \mu^* \]
breach of strong adiabaticity

\[\mu = \mu^* \]

\[\mu = 0 \]
breach of strong adiabaticity

\[\mu \neq \mu^* \]

\[\mu \neq 0 \]
strongly adiabatic transport

$$\mu = \mu^*$$
$$\mu = 0$$

weakly adiabatic transport

$$\mu \neq \mu^*$$
$$\mu \neq 0$$
not trivial weakly adiabatic conductivity

\[\Delta \mu = e \int_0^t J(t') dt' \]

\[J_\alpha(t) = \sum_{i\beta} Z_{i\alpha\beta}^*(t) v_{i\beta}(t) \]

\[J_\alpha(t) = \sum_i q_{S(i)} v_{i\alpha}(t) - 2 v_\alpha^{lp}(t) \]

cross term
conclusions
conclusions

heat conductivity is a well defined, measurable property, while the energy flux from which it can be computed from the Green-Kubo formula is not, because of a general gauge invariance principle stemming from energy additivity and conservation;
conclusions

- heat conductivity is a well defined, measurable property, while the energy flux from which it can be computed from the Green-Kubo formula is not, because of a general *gauge invariance* principle stemming from energy additivity and conservation;

- topological quantisation of adiabatic charge transport allows for a rigorous definition of the atomic oxidation states;
conclusions

- heat conductivity is a well-defined, measurable property, while the energy flux from which it can be computed from the Green-Kubo formula is not, because of a general *gauge invariance* principle stemming from energy additivity and conservation;

- topological quantisation of adiabatic charge transport allows for a rigorous definition of the atomic oxidation states;

- gauge invariance and quantisation of charge transport make the electric conductivity of stoichiometry electrolytes depend on the formal oxidation numbers of the ionic species, via the Green-Kubo formula;
conclusions

- Heat conductivity is a well-defined, measurable property, whereas the energy flux from which it can be computed from the Green-Kubo formula is not, because of a general gauge invariance principle stemming from energy additivity and conservation.

- Topological quantisation of adiabatic charge transport allows for a rigorous definition of the atomic oxidation states.

- Gauge invariance and quantisation of charge transport make the electric conductivity of stoichiometry electrolytes depend on the formal oxidation numbers of the ionic species, via the Green-Kubo formula.

- Breach of strong adiabaticity in non-stoichiometric electrolytes triggers an anomalous transport regime, intermediate between metallic and ionic, whereby charge may be transported without any concurrent mass displacement.
thanks to:

Federico Grasselli

Paolo Pegolo